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Abstract

—~ An assignment (spanning union of node~disjoint dicycles) in a directed
mph is called asymmetric if it contains at most one arc of each pair (i,j),
{J,1). .Wflc\lo;c;:ﬂ;oja class of facets for the asymmetric assignment polytlope,
associated with certain odd-length closed alternating trails. The inequalities
defining these facets are also facet defining for Lhe traveling saleaman

polytope on the same digraph. Furthermore, this class of facets is distinct

from each of the classes identified earlier.
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1. Introduction
Let G = (N,A) be the complete digraph on n = |N| nodes with no loops or
multiple arcs, and with costs c, ’ for every arc (i,j) An assignment in G is a
spanning subgraph that is the node-disjoint union of directed cycles, and the
assignment problem (AP) is

1) min T(cyyxyy @ i,jeN,itj)
..t D(xyy @ Jel-{i}) = 1 ieN
@ Txey : ioN-(3)) = 1 jeN
(3) x¢y & {0, 1) ieN, jsN- (i)

The assignment problem is a frequently used relaxation of the traveling
salesman problem (TSP), which (om a digraph) asks for a wminimum cost
directed Hamilton cycle. The TSP can be stated as having the objective
function (1) and a constraint set consisting of (2), (3) and
(4) Dxyy @ i,Je8,423) < Isl -1, s gN 2¢Is| ¢ o2

An asymmetric sssignment is one that contains at most one member of
every pair of arcs (i,j)y (ji), i.e. contains no directed 2-cycles. The
asymmetric assignment problem (AAP) has the same objective function (1), and
the constraint set (2), (3) and
(8) Xeg ¢+ x5 1 i, Js N, i ¥ Jo

Clearly, (5) is the subset of (4) corresponding to sets S ¢ N such that |S|
2 2. Thus AAP is also a relaxation of the TSP, stronger (tighter) than AP. In
fact, although AAP is closely related to AP, unlike the latter it is NP-complete
(Garey and Johnson (1980], Sahni (1974)). The asymmetric assignment (AA)
polytope P is the convex hull of incidence vectors of asymmetric assignments,
i.e.

P := comv {x & {0, 1}lAl | x satisfies (2), (5)}.




An arc set S ¢ A that is the subset of an (asymmetric) assignment will be
called an (asymmetric) partial assignment. If (2’) denotes the system of
inequalitiss obtained from (2) by replacing "=" with "<", then the incidence
vectors of asymmetric partial assignments (APA's for short) are those 0-1

vectors satisfying (2"), (5). The APA polytope is

~

P iz conv {x & (0, 1}'A! | x satisfies (2'), (5)},

also called the manotonizatiaon of P.

The traveling salesman polytope P* is the convex hull of incidence vectors
of tours (directed Hamilton cycles), i.e.

P* iz (x s {0,1})'A! | x satisfies (2), (4)).

Finally, the sonotone traveling salesman (MTS) polytope P¥ is the convex
hull of incidence vectors of partial tours (arc sets that are subsets of a
tour, i.e.

P¥ i= (x ¢ {0,1)'A) | x satisfies (2'), (4)).

The polytope P, like P¥, is easily seen to be full dimensional, i.e. dim P
= dim P¥ = n(n-1). As to P, since it is contained in the assignment polytope
and contains in turn the traveling salesman polytope, and the dimension of
these two is known to be the same (Gr8tschel and Padberg (1985]), namely
n(n-1) - 2n + 1, it follows that dim P = dim P¥ = n(n-1) - 2n + 1.

In this paper we describe some new classes of facet inducing inequalities
for the traveling salesman polytope P* defined on a directed graph G. These
inequalities define facets of the asymmetric assignment polytope P. They are
associated with certain subgraphs of G called closed alternating t-ails, that
correspond to odd holes of the intersection graph of the coefficient
matrix of the AAP. Section 2 introduces closed alternating trails and
establishes their structural properties. Section 3 uses Lhese properties to

identify some classes of facet irnducing inequalities for P and P¥. 1In




section 4 we prove that for n sufficiently large, these inequalities are also
facet inducing for P and P¥*. Finally, Section 5 discusses connections with

earlier work.

2. Closed Alternating Trails and Their Chords

Let G¥ = (V,E) be the intersection graph of the coefficient matrix of the
system (2), (5) (or the system (2"), (5)). Then G* has a vertex for every arc
of G; and two vertices of G¥ corresponding, say, to arcs (p,q) and (r,s) of G,
are joined by an edge of G if and only if either p = r, or q = 8, or p = s and
qQ = r. Two arcs of G will be called G¥-adjacent if the corresponding vertices
of G* are adjacent. Clearly, there is a 1-1 correspondence between APA’s in G
and vertex packings (independent vertex sets) in G¥; and therefore the
APA polytope P defined on G is identical to the vertex packing polytope
defined on G¥.

We define an alternating trail in G as a sequence of distinct arcs

T = (@3 vy B¢)

such that for k = 1, ..., t - 1, a, and a,4, are G¥-ad jacent, but a,, ag, t 2
k + 1, are not; with the possible exception of a, and a,. If a, and a, are
G¥-adjacent the alternating trail T is closed. An arc a, = (p,q) of T is called
forward if T meets p before q; backward if T meeta q before p. The
definition of an alternating trail T implies that the direction of the arcs of T
alternates between forward and backward, except for pairs a,, a,4, that form
a directed 2-cycle entered and exited by T through the same node; in which
case a, and a,s, are both forward or both backward arcs. Notice that T

meets a node at mosi twice, and the number of arcs of T incident from

{incident to) any node is at most 2. Two alternating trails,




T = (Q1,2),(3,2),(3,4),(4,3),(5,3),(5,6),(6,5),(6,7))

TI ((2!1)!(204)'(3i4)’(3’2)9(592))9

are shown in Figure 1.
Let G[T] denote the subdigraph of G generated by T; i.e., G[T] has T as
its arc set, and the endpoints of the arcs of T as its node set. Furthe.r. for
any v t N, let deg}(v) and deg7(v) denote the outdegree and indegree,

respectively, in G[T], of the node v.

The length of an alternating trail is the number of its arcs. An

alternating trail will be called even if it is of even length, odd if it is of odd

Figure 1

We will be interested in closed alternating trails (CAT’s for short) of odd

length. The reason for this is the following.




Proposition 2.1. There is a 1-1 correspondence between odd CAT’s in G

and odd holes (chordless cycles) in G¥,

Proof. Follows from the definitions.}

It is well known (see Padberg [1973]) that the odd holes of an undirected
graph give rise to facets of the vertex packing polytope defined on the
subgraph generated by the odd hole, and that these facets in turn can be
lifted into facets of the polytope defined on the entire graph (see section 4
for details). In order to make the lifting procedure conveniently applicable to
the particular vertex packing polytope associated with G¥, we need the
structural information concerning adjacency relations on G* that will be
developed in this section. |

Let T be a CAT in G. A node of G[T] will be called a source, if it is the
common tail of two arcs of T; and a sink, if it is the common head of two arcs
of T. A node of G[T] can thus be a smource, or a sink, or both, or none. A
node of G(T] that is neither a source nor a sink will be called neutral.
Several odd CAT’s are illustrated in Figure 2. The sources and sinks of
G(T,) are nodes 1, 2 and 2, 4, reapectively, while 3 is neutral. G[T,] has
three neutral nodes, 1, 4 and 6, while nodes 2, 3 and 5§ are both sources and
sinks. G(T,] has sources 1 and 4, sinks 2, 3 and 4, while 5 is a neutral node.

Proposition 2.2. Let T be an odd CAT of length t, with q neutral nodes.
then
(6) 1<q«t/3 and q is odd.

Proof. Let T = (a,,...,a4). If q = 0, the arcs of T alternate between
forward and backward, and either a, is forward and a, is backward, or vice
versa. But this implies that T is even, a contradiction. Hence q > 1.

Now suppose q > /3. Then T has more than 2t/3 arcs incident with

neutral nodes and less than t/3 arcs not incident with such nodes. Since T
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Figure 2

has more than t/3 2-cycles znd less than t/3 arcs left to separate them, there
exists a pair of 2-cycles with a common node. But such a node has indegree
and outdegree greater than 2 in T, contrary to the definition of an alternating
trail. Thus q < t/3.

We have seen above that for q = 0 T is even. For arbitrary q > 0, the
alternating sequence of forward and backward arcs is interrupted q times by
a repetition of type (forward or backward). Thus for q even, the number of

repetitions cancel out, and the fact that a, and a, are of opposite directions
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makes for an even T. For q odd, all but one of the repetitions cancel out,
and T must be odd.}

Proposition 2.3. Let T be an odd CAT of length t, with 8 sources, u sinks
and w 2-cycles. Then
(7) s+u+w=st

Proof. T has 2w arcs belonging to 2-cycles and t ~ 2w arce not belonging
to 2-cycles. Every arc of a 2-cycle has either a source for its tail or a sink
for its head, but not both. Every arc not belonging to a 2-cycle has both a
source for its tail and a sink for its head. Hence

s+u=1xw+2x (t-2w)/2

=t -w]
In t_.he sequel we will denote by 7 the family of APA’s in G.
Proposition 2.4. Let T be an odd CAT of length t. Then

(8) max |S OV 7| = (t-1)/2.
S}

Furthermore, for any pair of G*-adjacent arcs ay, ay4, of T (with t + 1 =
1), there exists S ¢ #, with a, # S, a,4, # S, and |8 N T| = (t-1)/2.

Proof. PFor any S ¢ 3, S (1 T contains no pair of G¥-adjacent arcs. The
largest such set clearly has cardinality /23 = (t-1)/2. PFurther, for ahy such
S ¢+ 3 IT\S| = (t41)/2, hence T \ S contains a pair of G¥-adjacent arcs of T;
and for any pair a,, a,4; of G¥-adjacent arcs of T, there exists S ¢ 7
containing (t-1)/2 arcs of T \ {a,, ay4: ).l

A chord of a CAT T is an arc a ¢t A \ T joining two nodes of G{T}]. If T
is odd and a = (u,v), a divides T into two disjoint subtrails, one odd (T,) and
one even (T,), each of which connects u to v. We distinguish between three

types of chordas. A chord (u,v) is of

° type 1 if it joins a source to a sink (i.e. degt(u) = deg7(v) = 2);




° type 2 if it joins a source to a neutral node, or a neutral node to a

sink (i.e. degf(u) + degj7(v) = 3) and the even subtrail T,
connecting u to v has its first arc incident from u and its last arc
incident to v;
° type 3 in all other cases.
Figure 3 shows the odd CAT
T, = ((1,2),(3,2),(3,4),(4,3),(5,3)(5,6),(1,6))
with its chords of type 1 (1,3), (3,6), (5,2) in shaded lines.

As T, has no chords of type 2, all other chords (not shown) are of type

Figure 4 shows the odd CAT
T. = ((1,2),(3,2),(2,3),(2,4),(5,4),(4,5),(4,6),(7,6),(6,7),(6,8),(1,8))

with its chords of type 1 in shaded lines, ((1,4), (1,6), (2,6), (2,8), (4,2), (4,8),
(6,2), (6,4)), and its chords of type 2 in checkered lines , ({1,5), (2,7), (3,6),
(4,3), (5,2), (5,8), (6,5 and (7,4)). All other chords (not shown) are of type 3.

Finally, of the three odd CAT’s of figure 2, T, has only chords of type 3;
whereas T, has three chords of type 1, (2,5), (3,2) and (5,3), and T, has two
chords of type 1, (1,3) and (4,2); all remaining chords are of type 3.

Proposition 2.5. Let T be an odd CAT of length t and for k = 1, 2, 3, let
C, be the set of chords of T of type k. Then

(t-1)/2 ceC, UC,

(9) max |S N (TU{c}))] =
Stz¥:ceS (t+1)/2 cz C,

Proof. Let ¢ = (uv), and let T =T, U T,, where T, and T; are the two

subtrails of T connecting u to-v. Since T is odd, we may assume w.l.o.g. that

T, is odd and T, is even.
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If ¢c £ C,, then ¢ ¢ S implies that S cannot contain the first and last arcs
of T, and T;. Hence the maximum number of arcs of T, and T, contained by
any such S is (|T,|-1)/2 and (IT,I—Z)/Z = |T3|/2 - 1, respectively, and the
maximum of the expression on the left-hand side of (9) is (l'r‘l-n/z (arcs of
T,) + |T,1/2 - 1 (arcs of T;) + 1 (the arc c) = (|T,|+|T,|-1)/2 = (t-1)/2.

If ¢c £ C,, then ¢ £ S implies that S cannot contain the first and the last
arc of T, (by definition of C,;, the last arc of T, is incident to v) and S
cannot contain both the first and last arcs of T,. Then the maximum number
of arcs of T, contained by any S ¢ # that contains ¢ is, as in the earlier
case, |T,|/2 - 1, and the maximum number of arcs of T, is (|T,|-—1)/2, also
like in the earlier case. Thus the maximum of the left-hand side of (9) is
again (t-1)/2.

Finally, if ¢ ¢ C,;, S can contain, besides c, (|T,i—1)/2 arcs of T, and
IT,.1/2 arcs of T2y and the maximum of the left-hand side of (9) is
Adrd-1y72 + Jral/2 + 1 = (t+y/2. |

Proposition 2.6. Let T be an odd CAT of length t and let C, be the set of
chords of T of type 1. Then

(10) max |S 1V (TUC,)| = (t-1)/2
SeF

Proof. Let S*¥ : 7 be such that |S*¥* N (TUC)l = max s N (TUC)H.
W.l.o.g. we may assume that for every neutral node v of G[T], S¥ N T
contains an arc incident with v. Indeed, should this not be the case for some
v, one can always replace the arc of S¥ () T incident with the {(unique) node
adjacent in T to v, with one of the two arcs incident with v in order to
obtain an APA S° such that |S° N (Tuc)l = |s¥ U (Tuc,)].

Let s, u and q denote the number of sources, sinks and neutral nodes,
respectively, of G[T], and let w stand for the number of 2-cycles of T. Let

s* 1 (TUC,) =S, U S,, where S, is the set of arcs in S¥ (1 T incident with

10
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a neutral node, and S, = S¥ N\ (TUC,) \ S,. By assumption, |S,| = q. From
Proposition 2.3 and the fact that q ¢ w,
s+u<ft-aq.
Every arc in S, has a source for its tail and a sink for its head; every
arc in S, has either a source for its tail or a sink for its head, but not both;

and no two arcs in S, U S; have a common tail or a common head. Hence

IS, U S;] < q + 3 (s+ua)
1
£aq+ 3 (t-2q)
-1
= zt

or, since t is odd, [S¥ N (TUC,)| ¢ (t-1)/2.]
Proposition 2.7. Let G be a complete digraph. Let T be an odd CAT of
length t, and let C, be the set of chords of T of type 1. Then

(11) max |S N (TUC,U{a})] = (t+1)/2, Y a £ A\ (TUC,)
Se?

Proof. Since there exists S : # such that |S N (TUC,)| = (t-1)/2, if a is
not a chord then clearly there exists S ¢ 7 auch that |S N (Tuc, U{ah] =
(t-1)/2 + 1 = (t+1)/2. If a is a chord of type 3, the existence of such S
follows from Proposition 2.5. Also, in both cases (t+1)/2 ia the maximum size
of S Y (TUC, U{a}), or else we have a contradiction to Proposition 2.5.

Now let a = C,, a = (u,v). As before, let T, and T, be the two sublrails
of T connecling u to v, with T, odd and T, even. Let S : # be such that
ar$S and |S N (TU{a))]| = (t-1)/2. Then S conlains (t-3)/2 arcs of T,
namely (IT,1-1)/2 arcs of T, and |T;1/2 - 1 arcs of T,. Thus T; has two
G*-adjacent arcs not contlained in S, say a, and ay4,, that have either a
common tail or a common head. Suppose node w is the common tail of a, and

a, 4+, with degt(w) = 0. (An analogous reasoning holds in case of a common

head.)

11
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W.lo.g., assume S contains the arc of T, incident from v, say a; (there is
always some set S with this property among those S : 7 such that a :+ S8 and

Is v T U (a}] = (t-1)/2). Since T, \ (ag} is even and has (|T,|-3)/2 arcs in

S, of which the first and last arc cannot belong to S8 (since the first arc is
G%-adjacent to a and the last one is G¥-adjacent to ag), it has two G¥-adjacent

arcs not contained in S, say a,, 8g4:, With a common tail = and degi(s) = 0, or

a common head s, and degj(s) = 0. W.lo.g., suppose the latter case holds.

Since G is complete, it has an arc ¢, = (w,s), and this arc is a chord of T of

type 1. Then 8° = § U ({c,}] is an APA that contains (t+1)/2 arcs of
T U (ae,). |

Remark. If G is not complete, (11) may not hold for some a ¢ C,.

It atill
holds for all a ¢ A \ (TUC,UCGC,).

3. lmtlofthhotm?olytq-l;-di'

We are now ready to cherscterize the class of facet inducing

inequalities

of the APA polytope P associsted with odd CAT's. We consider first the sub-

graph generated by an odd CAT.

As mentioned in Section 2, P is the same as the vertex packing polytope
defined on G% Purther, every odd CAT of G corresponds to an odd hole of
G*. It is well known (Padberg [1973]) that odd holes of an undirected graph
give rise to facet inducing inequalities for the vertex packing polyhedron
defined on the subgraph generated by the odd hole. Nevertheless, because of
ita simplicity and its usefulness in subsequent developments, we give a direct
proof of this result for our case.

For any S € A, we denote x(S) = I(x,; : (i,j)sS).

Proposition 3.1. Let T be an odd CAT of length t, and let P be the APA

polytope defined on G{T]. Then the inequality

. . e .
......



S

(12) x(P) < (t-1)/2
dafines a facet of F(O[ﬂ).
Presf. From Proposition 2.4, (12) is satisfied by all x ¢ P/G/T. . Let

T :: (a,,...,8,). Define x' ¢« P(G[T]) by x| =1 if 1 is oddand 1 _ 1 t,

x} 2 0 otherwise, and for k = 2, ..., t, define x* by x¥ = x¥z}, i = l....,t, with i

-1 =ztfori=1. Then the vectors x*, k = |, ..., t form the rows of a
circulant matrix of order t with (t-1)/2 1's in everv row (and every
column), known (o be nonsingular. Hence the t points x*, k = 1, ..., t, which
are clearly contained in 5(0[1‘]) M {x | (T = 't-1):2), are affinely 1inde
pendent. Thus (12) defines a facet of P(G!T]'.|

Cercllary 3.2. The inequality (12) dafines a facet of P¥/G(T)".

Proof. Since P8(G[T]' < P/G[T]), the inequality (12 1s valid for
P*/G(T]'. Since P¥/G/Ti! is full dimensional, 12 does not define an 1m
proper face. Finally, each of the t affinely independent points «* PG'T
used in the proof of Proposition 3.1 i1s a point of l;‘{G[T]). 1.e.  an 1nd1
dence vector of a partial tour. Thus (12) defines a facet of P¥(G(T .|

Next we will "1lift"” the inequality (12) to identify inequalities of the
form
a x(TY « Dlayyxy, @ (i §)eAVTY 7t 102
that define facets of P. [t is a well-known result in combinatorial oplimi~a
tion ‘see Padberg '1973), Neshauser and Trotter '1974', Balas and 7eme!
19841) that if (12) defines a facet of P'G[T!', there exist integers
&y, ‘1,30 ¢ AL T, such that (13) defines a facet of P. Furthermore,
for any ordering (i{l1),3(1 ', ..., "1(p},J(p)' of the arc set A T therc
exists such a 'not necessarily distinct facet defining inequality, whase

coefficients a(, can be obtained by solving a sequence of integer progrms.

aiengiiin.

To be moure specific, if for k = 1, ..., p, Gy = (N,,A,) s the graph onsisting




of the arcs in T U ((i(1),j(1)), ..., (i(k),j(k))} and their endpoints, the
coefficients of (13) are obtained by setting, for k = 1, ..., p,
(14) ay(e)gln) = (E 102 - 20005 (0)
where
Z,ly)jly) & max ¥ S TUREEN S P DR Ay VERURAE TS S IE R
Dixyy @ Jeryfi) <1 i NV "1kM

18
t(x” el gy 21 Jor Ny v k)

xieYy =0, 0 # (k) Xyjie) = 0, 1 # i(k)
x¢y 8 (0, 1}, (i,5) ¢ Ay,
and where T, (i) and T7!(i) are the sets of successors and predeceraors,
resxpectively, of node i in G,.

It follows from the above definition of the lifting coefficients, that in
comparing two inequalities of the form (13), say (13), with coefficients ~};.
and 13 ; with coefficients ufj. for any given arc 'i*.\j“ wir havn ”"Nt
) af‘l‘ if the rank of :i‘.,j“ in the sequence associated with 13", is lower
than in the sequence associated with (13),;,. So a given coefficient hus the
highest value if the corresponding variable is lifted first, and the lowest
value if it is liftad last.

Theorem 3.3. Let G = (N,A) be a complete digraph. let T be an édd CAT
of length t, and let C, be the set of chords of T of type 1. Then the
inequality
(16) ATUIC,) £ (t-1)/2
Jofines a fucel of the APA pulytope P and the MTS polytope p¥.

Proof. We lift the inequality (12) by taking the arcs of A \ T in any

order such that all arcs in C, precede all arcs in A \ (TUC,). let ¢, =

(it11,3(1)) be the arc in C, whose variable is lifted first. Then the maximum of

the integer progrum (15) ia Zy(v) ) F (t-3)/2, since from Proposition 2.5




max [SNT| = max S U (TU/c, 1} -1 = (t-3)/2.
Se?:.c,eS St¥:c,S

Thus a;7y) () = (£-1)/2 - 2y¢4);0) = L.

We ~laim that a;(,) (y) = 1, k = 1, ..., m, where [(i(1),j(1}), ..., (i(m),j(m)))
= C,. Suppose the claim is true for k = 1, ..., ¢ - 1, and let k = ¢ > 2. From
Propositions 2.5 and 2.6,

max(|{S N (TUH1),5(1)), oy (OGN 2 (1(6),5(0) « S) = (t-1)/2
hence
zi(4);(¢e) = max {|S N (TU(1),5(1),...,(i(€=1),j(e=IN] : (i(0),j(e)) » S
= (t-3)/2
and thus ay(e)j(ey = (t-1)/2 - z;(t)y(8) = 1, which proves the claim. Thus the
lifting coefficients of all variables corresponding to arcs of C, are equal to 1.

Consider now the coefficient of the variable associated with some ar-
az A\ (TUC,) that is lifted first after the variables corresponding to ar-.
in C,. Let a = (i(m+1),j(m+1)). Since G is complete, from Proposition 2.7 w..
have

max (IS O (TU{GE(1),§(1)), w0y ((m+D),jlm+eD)| : (((m+1),j(mel)) ¢ S)
= (t+1)/2
and thus
Zi(mt1)j(m1) = max{|S O (TU1),5(1), .., lilm),j(mN)] :
(i{lm+1),j(m+1)) « S}
= (L41)/2 - 1 = (t-1)/2.

Therefore A (mtr) j(mbr) = (t-1)/2 - Zy(mt1) (mt1) = 0. Since the varid -
associated with the arc a has a coefficient of 0 when it is first in the lifting
sequence (among the arcs in A\ (TUC,)), it has a ceefficient of 0 also wh. n
it is in any subsequent position in the sequence.

This proves that the lifting coefficients of the arcs a + A\ T are, fur .

lifting sequence that puts all arcs in C, before all arcs in A \ (T},

15




1 as C
®y =
0 e s A\ (TUC)
which proves that (16) defines a facet of P and of P*.|

The arc sets corresponding to the support (i.e. the set of positive
coefficients) of each inequality (16) in the digraphs with 4, 5 and 6 vertices
are shown (up to isomorphims) in Pigures 5 and 6, with the arcs of T and C,
shown in eolid and shaded lines, respectively. The number of such
inequalitiss is 2¢ for a graph cn four nodes, 360 for a graph on five nodes,
and 3,360 for a graph on six nodes.

It is emsy to establish the Chvatal rank of the inequalities (16). Chvatal's
[{1973a]) procedure for genersting all the inequalities valid for a polyhedron
defined as the convex hull of integer points satisfying a given set of linear
inequalities Ax ¢ b consists of recursively applying the following step: take
all undominated positive linear combinations of the inequalities of the current
system and add the resulting inequalities to the system after rounding down
all coefficients 0o the nearest integer. The initial system Ax ( b is said to
have rank 0, while the inequalities obtained in the first step of the recursion
have rank 1.

Remark 3.4. The inequalitise (16) have Chvatal rank 1.

Proof. Bach inequality (18) aseociated with an odd CAT T can be obtained
by adding the equations (2) aseociated with each source and each sink of
G{T]), and the inequalities associated with each two-cycle of G[{T]; then dividing
by two the resulting inequality and rounding down all coefficients to the
nearest integer.})

The inequalities (16) can be expressed in an equivalent form as ™"

inequalitiss with all lefthand-side coefficienta equal to 0 or 1. Indeed, let S




be the set of arcs whose tail is a source of G[T], let U be the set of arcs

whose head is a sink of G[T), and let W be the set of arcs contained in a
two-cycle of T.

Theorem 3.4. A vector x s PI(A) satisfies (16) if and only if it satisfies
(16") x(SUT\W) > -;-(tﬂ) - q.

Proof. Subtracting from (16) the equations (2) corresponding to every
source and every sink of G{T), and multiplying the resulting inequality by - 1
yields (16').]

There are some inequalities other than the family (16) that can be
obtained by lifting the inequality (12), but their description is more
cumbersoms. The following rules apply to all facet defining inequalities (for
P and P¥) obtained by sequential 1ifting from (12). As before, for k =
1, 2, 3, let C; be the set of chords of type k.

) All verisbles corresponding to chords in C, U C, get a coefficient

of 0O or 1, and all remmining variables get a coefficient of 0,
irrespective of the lifting sequence.

° If all varisbles corresponding to chords in C, are lifted before all
others, then all variables corresponding to chords in C, get a
cosfficient of 1 and all remsining variables get a coefficient of 0
(this is the family (16)).

. If a variable corresponding to a chord (i,j) ¢ C, is lifted first, 1t
geta a coefficient of 1, but then the variables corresponding to
certain chords in C,, whose identity depends on (1,)), get a

coefficient of 0, as do all the variables corresponding to arcs 1n

AN\ (TUC,U{G,H.







4. Facets of the Polytopes P and P¥

Theorem 4.i. For n > 6 and any odd CAT T in the complete digraph G,
the inequality (16) defines a facet of the AA polytope P.

Proof. Let

F:=P N (x| x(TUc,) = (t-1)/2}

We will show that F is a facet of P by proving that dim F = dim P - 1.
This in turn will be accomplished by showing that for any linear inequality ax
{ «, satisfied by all x ¢ P and satisfied with equality by all x ¢ F, the
equation ax = a, i8 a linear combination of the equations (2) and x(TUC,) =
(t-1)/2.

W.l.o.g., assume the nodes of G to be numbered so that n - 1 is not a

source and n is not a sink of G[T]. Such a pair always exists. Define

{a‘“ - ®poa,n i=1, ..., n-1
A =
0 i=n
amn
{m"_,'j J=1 ..., n-2, n
By =
0 J=n-1

We will show that there exists a scalar n,, which together with the

A, My satisfies

X' + I‘j if (1..)) ¢ T U C|
(18\1 “ij =

Ny bomy 4 if (i,§) ¢ T U C,
and
19) ap = LAy : ieN} + I(wy @ jeN) + ({t-1)/2)m,.

For ‘i,j) # T U C,, we have to show that

‘18") apy = A +omy

19
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This is obviously true for i 2 n-1, j ¢t N - {n -1} and for i 2z N - {n}, j

=n Porign-1,j#nigj consider x ¢ F such that X{j = Xpe1,n = 1

and X,y = Xj,n-1 = 0. For n > 6 such x always exists. Define x by x.'j
x,:..‘,,, = 0, x:,, = x,:..,,J = 1, ¢ = x,¢ for all other k, ¢&. Then x is an
asymmetric assignment and x'(’I‘UC‘) = (t-1)/2; i.e. x ¢ F. By assumption, ax
= ax’ = «o, hence

ax - ax' T @yj + Gpoy,n - Ryp = Epoy,y = 0,
i.e. (18") holds.

For (i,j) ¢+ T U C,, define
(20) Mg T Ay = Ay = py

We will show that the =, are all equal.

Let (i,j) ¢t T U C, be such that i is a source and j is a sink of G[T], and
there exists a node v of G[T], 1 # v # j, that is both a source and a sink.
Such (i,j) always exists. For every sink ¢ of G[T], ¢ % i, j, choose some
k 4, j, ¢ such that (k,¢) # T U C,, (kyj) # T U C, (such k obviously
exists). Since i is a source and ¢ is a sink of G[T], (i,4) ¢ T U C,. Now
consider x ¢ F such that Xy3 = x¢¢ = 1 and x4, = x¢y = 0. Define x by x,’j =
x.:g =0, x:g = x,:J = 1, and Jgfs = x,.q4 for all other r, s. Then x ¢ F, hence ax
s ax’ = «o and thus
(21) @yt e S agg + oy

Similarly for every source p of G[T], p # i, j, choose some q # i, j, p such
that (p)q) # T U C,, (i,a) # T U C, (such q always exists). Since p is a
source and j is a sink of G[T], (p,j) ¢ T U C,+ Consider now X ¢ F such that
Xyy = Xpq = 1, Xy, = Xqy = 0. Define ¥ by %) = %q =0, Kq = %y = 1, and X,

= X,, for all other r, s. Then X e F, aX = ai’, and thus

(22) a'j+apq:a‘q+apj.




Substituting into (21) the expression from (20) for a;; and a;¢, and the
expression from (18) for ayj and & ¢, we obtain
LUTIRAETIR I TE I IR VR VIR R NI T R R R IT
or my = myg.
Similarly, substituting into (22) the expression from (20) for @y
and a,4, and the expression from (18) for a;4 and a,,, we get
LITIRIR IR VYRR I WL JUTHR L SURE IR PUR VYRR 2 YRR JUTHS
or myy = gy, Thus nyy = n;y for every sink ¢ of G[T] and ny; = =m,; for
every source p of G[T]; and since G[T) has a node v ¥ i, j that is both a
source and a sink, it follows that », = LTI Hence all LD (i,j) + T U C,,
are equal to some n, , and thus (18) holds.
Finally, since every x ¢ F has exactly (t-1)}/2 positive
components X4 with (i,j) « T U C,, and exactly one positive component X§
for every i ¢t N and every j ¢ N, substituting into ax = «, the expression for

@;; given by (18) yields

®g = T (X,+#1+ﬂo)x11 + T (X|+ﬂj)xij
(i,j)eTuC, (1,J)#TuC,

LN, : 1zN) + E(pj : jeN) + ((t-1)/2)m,
which is (19).}
Theorem 4.2. For n > 10 and any odd CAT T incident with at least 8 and
at most n - 2 nodes, the inequality (16) defines a facet of the TS polytope p¥.
Proof. Our proof will parallel that of Theorem 4.1, the main difference
being that while interchanging a pair of appropriate indices in an assignment
produces another assignment, only a triple interchange can get one from a
given tour to another tour.

Let

F¥ := P* n (x | x(TUGC,) = (t-1)/2).
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We will show that dim F¥ = dim P¥ - 1 by proving that if ax < «, for all
x ¢ P¥ and ax = «, for all x ¢ F¥, then ax = «, is a linear combination of (2)
and x{TUC,) = (t-1)/2.

W.lo.g., assume that nodes n - 1 and n are not incident with T, and
define Ay, py by (17). As in the proof of Theorem 4.1, we will show the
existence of a scalag- no which together with these A;, I satisfies the
relations (18) and (19).

For (i,j) # T U C,, we have to show (18’), which is obviously true for i =
n-1,jetN-{n-1,and forie¢N-{n}, j=n. Forign-1,j#n,i#j
let k, ¢t and p be distinct nodes, other than i, j, n -~ 1 and n, such that none
of the arcs (k,t), (p,?), (p,j) belong to T U C,. Consider x, ¥ ¢ F¥ such that
Xkt = Xpj = Xpe1,n = 1, Xyt = Xpy = Xjy = 1, and the tour defined by x (by X)
traverses the arc (k,t) after (p,j) and before (n-1,n) (before i,n)). Since G[T]
has 7 nodes, with 8 { * { n - 2, such tours always exist (see Figure 7 for an
illustration). Now define x and % by x|:¢ = 41 :9:..,,,, = 0, :q:n = x‘;g = :9:._,,_‘
= 1, )gfs = x.g for all other r, s; and 'ﬁ:: = i,;J = 'i.’,. = 0, :‘q,’n = :‘g:g = Tq’J = 1,
'Ji.', 2 X.¢; for all other r, s. Then x, ¥ define tours, each of which has the

b 4

same number of arcs in T U} C, as x and X; hence x’, % &« F%. By assumption,

’ - e
we then have ax = «y = ax and aX = «y = «aX. Thus

ax - ax’ apt + xpg b Aoy g = Xy = @pg = Xqey,; T 0,
ai-ai,zak‘+°‘pj +“in"°‘kn'°‘pl"°‘1j =0,
and subtracting the two equations yields
x5 ; =S x5, + Fne1,§ = %Xp—=1,n
as required by (18’).
For (i,j) = T U C,, we introduce multipliers T defined as in (20), and

then show that they are all equal to some m,. For this purpose, let
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(i,j ¢ T U C, be such that i is a source and j is a sink of G[T], and there

exists a node v of G[T], i # v # j, that is both a source and a sink.

For every sink q of G[T]l, q # i, j, choose a pair of arcs k, ¢, distinct
from i, j @y n - 1 and n, such that ¢ is a source and (k,j) # T U C,.
Consider x, X ¢ F¥* such that Xpe1,n = Xygj = Xgq = 1, Xpoyyn T Xy = Xyq = 1,
and the tour defined by x (by X) traverses (n-1,n) after (k,j) and before (¢,q)
(before (i,q)). Such x, X always exist (see Figure 8 for an illustration). Now

0:&:_\”:&:":1;_]':1' x,.’s=x,.5 for

’
Xtq

"

define x’' and ¥ by %i-1,n = %

?

0, ’-G:—x,q = %n = -ii’j = 1, ’-ﬁ-,s = X, for

all other r, s; and i,:_,,,, = ‘i:i = i,’q
all other r, s. Then x and % are tours. Furthermore, since T tJ C, contains
exactly one of the arcs (n-1,n), (k,j), (¢,q) (namely (¢,q), since ¢ is a source
and q is a sink of G[T]) and exactly one of the arcs (n-1,q), (k,n) and (¢,j)
{namely (¢,j)), the tours defined by x and x' contain the same number of arcs
of T U C,. Similarly, since T UJ C, contains exactly one of the three arcs
(n-1,n), (k,j), (i,q) (namely (i,q)), and exactly one of the arcs (n-1,q) (k,n),
{(i,j) (namely (i,j)), the tours defined by X and % contain the same number of
arcs of T U C,. Hence x’, % ¢ F* and ax = ax = &g = aX = oX. Thus

o,

Xpei,n t Xy * Alg = Xpar,q T Fkn ~ Ry
Apoiyn + Ay + Xyq T Faoi,q T Fen T Xig T 0,

and subtracting the two equations yields

{23) apy + apg = @q + agg.

Similarly, for every source p of G[T], p # i, j, one can choose a pair of
nodes h, m, distinct from i, j, pp n - 1 and n, such that m is a sink and
(i,h) £ T U C,. Consider x, ¥ ¢ F¥ such that Xn=1,n = Xih = Xpm = 1, Xpoayn
= Xyp = ipj = 1, and the tour defined by x (by X) traverses (i,h)} after (n-1,n)
and before (p,m) (before (p,j)). Now define x by :9:_,',, =%y, = :g:m = 0, x,:_,,h

S Xim = X = 1, xr's = x,., for all other r, s; and % by ‘7';,’_1,,, = :Tr.,’h = ‘:‘g:j =
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0. ﬁ:-.,,, = l." = "',, = 1, i,’, = X,, for all other r, s. Then x' and X are
tours, and since (p,j) ¢t T U C,, (i,m) «t T U C, (as p and i are sources and
and m are sinks of G(T]), the tours defined by x and x', contain the same
number of arce in T U4 C,. Thus x, ¥ « F¥ and
Tparyn ¥ G+ Ay - Ay - Ay = &, S 0,
PR L T A Y I P Or O L T P 0.
Subtracting the last two equations then yields
(24) LT IR AT N SRS Y Ty
Then substituting into (23) and (24) the expression from (20) for «_, such
that (r,a) «+ T U C, and the expression from (18) for «,.., such that
(r,8) # T U C, yields n;; = n, for every sink q of G(T], and =, = n,, for
every source p of G[{T]. Since G[T] has a node v # i, j that is both a source
and a sink of G[T}, it follows that n,¢ = n, for all (k,t) ¢ T UJ C, and thus
(18) holds.
Finally, substituting into ax = a; the expreasion for @, given by (18)
yields (19).]

The pairs of tours x, x and X, ¥ used in the proof of Theorem 4.2 are

illustrated in Figure 7 for (i,j) # T U C, and in Figure 8 for (i,j) ¢ T U C,.

5. Relation to Rarlier Work
Sevearal classes of valid, and sometimes facet defining, inequalities for the
traveling salesman polytope on a directed graph are known. For a thorough
survey of the relevant literature see Gr#tschel and Padberg [1985].
First, if
Ia yy. ) @ GJIPE) < a,

8 & valid inequality for the TS polytope on an undirected graph, then

Dla, (xg ¢xy0) 11 € )) < ag
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is a valid inequality for the TS polytope on the corresponding directed graph.
Thus the various classes of facet defining inequalities for the TS polytope on
an undirected graph, like the subtour eliminations inequalities (Dantzig,
Fulkerson and Johnson [1954]), the comb inequalities (Chvatal [1973b],
Gritschel and Padberg ([1979]), the clique tree inequalities (Gr8tschel and
Pulleyblank {1985]) have their correspondenta as valid inequalities for the TS
polytope on a directed graph. Whether or not these inequalitiea are facet
defining has not yet been elucidated for every class. The subtour elimination
inequalities are facet defining for P¥* for n > 5 and all subtours of length
8, 2< ¢ <n -2

the comb inequalities are facet defining for P*¥ for n > 6, but whether they
are facet defining for P* is an open question (except if n = 6 or 7, in which
case they are not). As to the more general clique tree inequalities, it is not
known at this point whether they are facet defining for either P¥ or P¥.

All the above classes share the feature that the inequalities belonging to
them are symmetric in the sense that an arc (i,j) belongs to the support of
such an inequality if and only if (j,i) does. The inequalities associated with
odd CAT’s do not have this property, except for some special cases; so they
are distinct from each of the above classes. As to those special cases, they
arise when a subset of T together with the chords of type 1 form a complete
digraph; in which case this complete digraph becomes the handle of a comb,
whose teeth are the directed 2-cycles of T. Such is the case, for instance,
with the odd CAT of length 7 shown in Figure 6 (c). More generally, all comb
inequalities corresponding to combs whose handle H and teeth T,, i = 1, ..., k

satisfy
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(1) 7| = 2, i=1, ..., k
and
"
(i1) Rec ( U T
izl
are special cases of odd CAT inequalities and thus, from Theorem 4.2, for |H|
> 5 and n > 12 they define facets of P%.

Several clasees of ssymmetric valid inequalities for the TS polytope on a
digraph have been identified by Gré8tschel (1977]) and Grétachel and
Wakabayashi (1981 a, b]l. Sowme of these are derived by lifting the (weak)
subtour elimination inequalitiss. As the support of each such inequality
contains a subtour, the odd CAT inequalities, whose support contains no
subtour except for some special cases, are obviously distinct from this clasas.
Other classes are associated with hypohamiltonian and hyposemihamiltonian
graphs; again, these do not subsume the odd CAT inequalities. Finally, the
class of so-called T,-inequalities (Gr8tschel [1977]) overlap with the odd CAT
inequalities for k = 2, in that the T,-inequality is precisely the odd CAT

inequality on four nodes depicted in Pigure 5.

6. Conclusion

We have given a partial linear description of the asymmetric assignment
polytope P defined on a digraph G, by identifying a family of valid
inequalities associated with odd closed alternating trails of G. These
inequalities are facet defining for P, and for sufficiently large graphs and
sufficiently long trails, they are also facet defining for the traveling saleaman
polytope P* on G.

It is to be expected that these inequalities will provide improved bounds
and enhanced solution procedureas for the asymmetric TSP when used as

cutting planee either in the context of a pivoting algorithm like that of
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Gr8tschel and Padberg [1985]), or in the context of a Lagrangean-based
algorithm that takes the cuts in the objective function with approprate
multipliers, like that of Balas and Christofides [1981).
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